
 Page 1/10

Formal assessment of hybrid functions

M. Fortes da Cruz1, M. Kwiatkowski2, S. Sharma1

1: Airbus Operations Ltd., New Tech Centre (09H—B1), Golf Course Lane, Bristol BS99 7AR, UK
2: School of Informatics, The University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

Abstract:
It is commonly accepted in the academic community
that if the use of formal methods were more widely
spread and properly supported, then their use would
provide substantial development time and cost
benefits for the engineering of safety-critical
systems.
The present work builds upon an increasing
imperative to improve continuously the process,
methods techniques and tools for analysing the
functions/behaviours allocated to hybrid systems in
the chosen avionics and mechatronics technologies.
Formalisation of requirements and formal expression
of models remain the two major representational
bottlenecks impeding the wider industrial usage.
Our investigations suggest that relatively minor
improvements to the prevailing industrial practices
can help to overcome these bottlenecks and to start
benefitting from the power of formal methods.
In this paper, we present a novel method and
workflow for formally analysing engineering
specifications of hybrid systems that, semi-
automatically, bring together requirement and
domain engineering model. Both the method and
workflow are validated with a case study of the
Airbus A350 autobrake model.

Keywords:
Formal requirements, hybrid functions, model
checking, ICP, SAT, LTL, CTL, DPLL, SMT.

1. Introduction and industrial motivation

Introduction:
For more than three decades, the aerospace
industry has been using digital computers as an
integral part of the civilian aircraft's flying safety-
critical equipments. In turn, the proliferation of digital
computers has created an increasing imperative to
continuously improve the process, methods
techniques and tools for analysing the functions
allocated to systems in their chosen technologies.
The present work builds on this imperative by
exploring ways and means for increasing the
automation of formal verification. The proposed
automation is through translation of requirements,
and their respective design models, into formal logic
transcriptions that can be merged and analysed from
the same file.
The systems of interest are hybrid systems; these
are multi-physics systems that exhibit continuous-
time and discrete-time behaviours, with event-driven
behaviours emanating from the embedded software
components.
Naturally, hybrid functions are allocated to, and
implemented by, hybrid systems. Further, the term
hybrid function is used to describe those functions
that feature both continuous and discontinuous
functions from the multi-physics domain as well as
the discrete-event functions from the embedded real-
time control software applications.
Design is constructed through using models of both
the physical elements (using CAD tools) and the
avionics elements (using CASE tools). Conversely,
the requirements have evolved from being disjoint
sets of objective in structured documents, to
integrated databases of indexed and linked textual
objectives for validation and verification.
Applying formal methods to verification of embedded
software for avionics requires constructing a
coherent formal set of propositions that precisely
captures the textual assertions and property
objectives into formal logic propositions.
Besides, the engineers also need to envision
consistently the behavioural logic of their models into
a formalised set of declarations, relations,
constraints and state transitions.
Before any meaningful formal assessments can be
conducted, both sets of formal sentences―models
constrained by requirements, and the attached
objectives―must be correctly merged and prepared
for analysis using a model checker.

 Page 2/10

Industrial motivation:

The Advisory Council for Aeronautics Research in
Europe (ACARE) was set up in June 2001 to
develop and maintain a Strategic Research Agenda
(SRA) for aeronautics in Europe. This was referred
to as the ACARE 2020 Vision. By 2004, ACARE
identified five challenges and six high-level Target
Concepts. These were gathered in two volumes [1].

This work aims to provide some contribution to the
following three ACARE challenges:

a) The Challenge of Quality and Affordability:
The Quality of the product is both its
attributes and its properties; the attributes
are subjectively assigned by the observer,
whilst the properties are its intrinsic
characteristics. We focus on the extent to
which these intrinsic characteristics of the
product fulfil its requirements.
Affordability is also a subjective attribute;
however, from the perspective of the
manufacturers, it results from the ability to
price the product correctly. Controlling the
cost of Design, Development and Build
allows the manufacturer to price the product
for the market. Specifying the product
concisely, so that the supply chain produces
the required products, is a key contributor to
affordability.

b) The Challenge of Safety
Safety is the topmost driver for the
aeronautics industry. The notions of Safety
emerge from the behaviour of the system-
elements and their interactions with their
operations environment. In turn, the
behaviour of the product emerges from the
behaviour of its parts and their interactions.
We focus on the automatic assessment of
those safety properties that are allocated to
the product. As one of the contributors to
meeting the Challenge of Safety, ACARE
identifies ―Increase depth of product‘s
dependability assessments‖ during the
Design, Operation and Maintenance phases.
We focus on increasing the depth of the
systems dependability during the design
phase.

c) The Challenge of Air Transport System
Efficiency
Improvements in the efficiency of the ATS
effects, and is affected by, the reliability of
the components that constitute the system.
An aircraft is a component of the Air
Transport Systems (ATS). From an aircraft
manufacturers‘ perspective, the aircraft must
be one of the most reliable components of
the ATS. Further, the systems that constitute

the aircraft must be reliable as they, in turn,
contribute to the reliability of the aircraft.

The remaining two challenges; the Challenge of the
Environment and the Challenge of Security are
outside the scope of this work.

In contribution to this industrial context, we address:

 The impediments that occur between the textual
requirements and their manually interpreted
formal expressions. The effort of interpretation is
time and resource consuming, which defeats the
object right from the start. One way to clear this
bottleneck is to structure the engineering domain
text and automate the formal translation.

 The need to assess both the continuous and
discrete state space, and path of computations.
Aircraft systems, such as the braking system,
implement an aggregated set of hybrid functions
in their chosen technologies of hardware,
software and physical components, which are
sensed, controlled and commanded. The
Domain and Safety & Reliability Engineers
interpret the normal and abnormal behaviours
that lead to different envisioning of the models. A
common and purpose-specific set of envisioning
rules is necessary to assess the different
perspectives of a system, for example,
addressing a common V&V and safety purpose.

In order to address these areas this paper is
organised into three parts. The first part, presented
in Section 2, describes the formalisation of the
constraints and properties of the models. The
second part, presented in Section 3, describes the
case study and a validation of the results. The final
part, presented in Section 4, concludes with a
discussion of our findings and suggests further work.

2. Formalising models and their properties

In order to analyse avionics models against design
requirements automatically, it is necessary to
remove all ambiguity from both areas. Furthermore,
the resulting formal versions of models and
requirements have to be compatible. This presents
the non-trivial task of choosing the formal platform
on which to conduct our analysis. Because the
functions we aim to analyse are hybrid and non-
linear, the formal framework has to be able to
faithfully capture these two concepts.

2.1 Formal frameworks

A theory, a notation, a language and a platform
support each of the formal frameworks below. The
maturity of the first two frameworks led to industrial

 Page 3/10

applications in the area of hardware verification (e.g.
Collins proprietary AAMP5 Microprocessor) [9].

Design Verifier (SLDV, DV plugin) [4]:

SLDV is an option for the MathWorks
MATLAB/Simulink

©
 and the SCADE

©
 tool set. It

performs an exhaustive formal analysis of dataflow
and controlflow models, restricted to the interface
boundaries and to the scope of the relevant selected
set of sub-systems or functional operators. The
model coverage assessment is deduced from the
analysis, which follows from that scope assumption.
Dataflow refers to the Simulink and SCADE
approach to modelling functions.
Controlflow refers to Stateflow/SSM approach to
modelling behaviours and mode logic with
transitions.
SLDV/DV can confirm or refute the consistency and
correctness of Simulink/Stateflow or SCADE/SSM
models with respect to the given properties. Domain
engineers specify these properties directly in a
Companion Observer Block Diagram, as claims to
be guaranteed from assumptions about the interface.
The constraints are specified in the models using
assertion blocks.

NuSMV (LTL/CTL) [3]:

NuSMV is a symbolic model checker that originated
from the re-design, re-implementation and extension
of CMU SMV; a BDD-based model checker originally
developed at CMU [McMillan 1993]. The input
language of NuSMV is designed to take a
description of Finite State Machines (FSM).
The types of FSM can be completely synchronous to
completely a-synchronous, and can feature full
details up to more abstraction. NuSMV specifications
are expressed in either of two different temporal
logics: Computation Tree Logic CTL, and Linear
Temporal Logic LTL extended with Past Operators.
NuSMV evaluates CTL and LTL specifications in
order to determine their truth or falsity in the FSM. If
a specification does not to hold, then NuSMV
constructs and presents a counterexample, i.e. a
trace of the FSM that refutes the property.

HySAT [5, 6]:

In essence, satisfiability (SAT) is the problem of
determining if the variables of a given Boolean
formula can be assigned in a way that the formula
evaluates to TRUE. Martin Davis and Hilary Putman
(DP) devised the first algorithm in 1960.
In 1962, George Logemann and Donald W.
Loveland proposed a refined DP as DPLL-algorithm.
HySAT is a SAT solver developed at the University
of Oldenburg. It checks for satisfiability of
arithmetical formulae that might involve non-linear
and transcendental functions. HySAT processes

elements of discrete and continuous domains (e.g.
integer and real) as intervals on the real line and
thus the solver is particularly suitable for analysis of
hybrid functions.
HySAT integrates the DPLL-based SAT proof search
algorithm with the interval-based arithmetic
constraint propagation. This allows HySAT to take
advantage of handling conventional model checking
whilst handling similarly large Boolean combinations
of non-linear arithmetic constraints involving
transcendental functions.
Because the functions under analysis are hybrid and
non-linear, the formal framework must faithfully
capture these two concepts. Theory of hybrid
satisfiability, and in particular the SMT solver
extension in HySAT, appears suitable to solving this
class of problems.

HySAT accepts input files consisting of four sections.
The first three define the dynamic model that is the
subject of analysis by listing all the state variables
and the relationships between them (called
constraints). The last section contains the target
formulae that encode questions about the present
and future behaviour of the model.
Design requirements are represented as target
formulae and models as sets of constraints. This
achieves the integration of the two domains;
described in more detail in the next sections.

The choice of HySAT was based upon the following
three reasons. Firstly, it handles discrete and
continuous variables in a uniform fashion, namely as
intervals on the real line; therefore, it provides an
elegant and powerful (through the use of interval
arithmetic) framework for hybrid analysis. Secondly,
it supports the use of non-linear as well as
transcendental operators in constraints and targets,
and hence copes with the inherently non-linear
characteristics of physical laws. Finally, it supports
relatively free mixing of Boolean and arithmetical
constructs, which are useful when analysing signal-
processing diagrams. For a detailed comparison of
HySAT with other satisfiability software, see [2].

Certain analysis and verification tasks can be
performed directly by Design Verifier (DV) [4]. Whilst
a useful tool, DV is not able to handle the complex
non-linearities inherent in the majority of the
requirements that industrial engineers deal with;
further Simulink and Stateflow are not based upon a
synchronous language.

2.2 Formalising a Dataflow block diagram model

Simulink: The starting points of the model
formalisation tasks are Simulink (*.m files) design
specifications (*.mdl files). Here, the point of interest

 Page 4/10

is on signal-processing diagrams. Such diagrams
are translated to HySAT model specifications. More
precisely, a state variable is assigned at first to every
line in the model. Then, one or more constraints are
produced for every block, hence linking variables
corresponding to its input and output signals in a
way that reflects the block's intended behaviour.
Finally, a limited type and range inference for the
output variables is achieved. A by-product of this
translation is an association table of signals and
variables, which proved very useful for debugging.

As an example, consider a summation block with two
input signals and one output signal. In the first step,
variables for the signals are created; say „x‟ and ‗y‟
for the inputs and ‗z‟ for the output. The second step
yields the invariant constraint „x+y=z‟, which
obviously reflects the normal behaviour of the
summation block. Finally, assuming that input
signals (x, y) are floats with ranges ([0,100], [-
50,50]), the type of the output signal, z, is inferred
also to be a float, with the range ([-50, 150]). An
output might be an input to another block; such
information can also be used to infer type and range
of the output of that block.

Implementation: The procedure described above
was implemented using the Target Language
Compiler (TLC), a code generation language for
Simulink, allowing annotation of the model files and
generation of a coded format file in HySAT format.

The Simulink to HySAT translation consists of three
stages using TLC:
(a) Pre-processing of the Simulink model (setup.tlc)
(b) Creating appropriate constraints (blocks.tlc)
(c) Inferring the types and ranges of variables

(bounds.tlc).

2.3 Formalising constraints from requirements

Formalisation starts with a design requirement given
as an English sentence. The ideal route to take
would be to automatically parse, recognize and
translate such sentences; however, current state of
natural language processing makes this an

impractical — if not infeasible — option. As the first
step, therefore, requirements are re-written into an
equivalent, human-readable form; however, a form
that is sufficiently constrained and parsimonious to
be machine-readable. In a second step, a procedure

was devised to automatically translate such semi-
formal sentences to Linear Temporal Logic (LTL)
expressions. Finally, those sentences were
automatically translated into the HySAT target
formulae.

Step 1: A formal grammar is built to make
requirements expressed in natural language to be
machine-readable. A formal grammar is a set of
rules (called productions) for generating text by
successive rewriting a pre-defined string. Grammars
generate sentences that resemble original natural
language requirements. A computer can understand
(parse) such sentences precisely because a
grammar constrains their structure (syntax). To give
an example, the original requirement « The
autobrake shall disarm after take-off » becomes « It
shall always be true that the autobrake is not
armed after the aircraft takes off. » Here, this
translation is done manually but can be enhanced by
a user-interface to guide the requirements engineer
(Appendix 1).

Step 2: Once the semi-formal requirement is parsed,
it is possible to identify the atomic statements, i.e.
those that are the most basic assertions about the
system. In the above example, these are « the
autobrake is not armed » and « the aircraft takes
off ». We manually match them to appropriate
conditions on state variables, such as
„AB_DISARMED = TRUE‟. Having done that, we use
the internal structure of the semi-formal

requirement — constructed using the grammar  — to
build an LTL expression encoding this requirement.
This is further facilitated by the fact that most
productions directly correspond to specific LTL
constructs (Appendix 2).

Step 3: The translation of LTL expressions to HySAT
target formulae is relatively straightforward and
amounts to little more than syntactic manipulations.
Here we have to bear in mind, however, that certain
LTL expressions are too complex to have a HySAT
representation. Moreover, it is possible that the
requirement holds when the target formula is
unsatisfiable, and dually, fails when the formula can
be satisfied. These cases are properly reported
during the automated translation (Appendix 4).

Implementation: The procedure detailed above was
implemented as a standalone program using the
functional programming language Haskell. The
program requires three input files; one containing the
semi-formal requirements, one matching the atomic
sentences to simple conditions on state variables
and one containing the HySAT model definition
produced from the Simulink diagram. The program
then outputs the complete HySAT input file, ready for
analysis.

 Page 5/10

Architecture of the Requirement Analyser:

The main program file accepts two input files: i.e.
requirements (reqs) and variable/condition
association table (leaves), and communicates with
the different target language specifications via a
standardised interface (interface.hs)

3. Formal assessment of hybrid functions

3.1 Case study using HySAT

The Airbus A350 autobrake analysis model consists
of 1288 Simulink blocks and a similar number of
lines. A HySAT model consisting of 658 variables,
238 constants and 822 constraints were obtained
after the translation. The type and range inference
procedures were successful for 81% of signals; the
remaining 19% were involved in feedbacks, where
the naïve iterative method failed. Manually inserting
proper types and bounds in the loops and re-running
the algorithm refined this method with a final result
(Appendix 3). Three requirements were positively
verified on this model. Both the formalisation and
verification tasks were completed within minutes on
a standard desktop computer (Appendix 4).

3.2 Validation using Gryphon/NuSMV

The formalisation of Simulink models can be
performed using more established software tools.
The Reactis tool (by Reactive Systems) pre-
processes the models to an intermediate format
recognizable by the Gryphon tool (by Rockwell
Collins) [7]. Gryphon produces a formal NuSMV
specification and runs the NuSMV model checker.
This NuSMV based workflow supports a wide range
of Simulink blocks, but has one crucial shortcoming

from our point of view — it does not yet fully support
continuous variables, and hence hybrid systems.
In order to compare our approach with the Reactis,
Gryphon and NuSMV workflow, we have isolated a
fragment of the A350 braking and control system
where all but one variable are discrete, and
discretised the only continuous one. We then wrote
several study requirements for this module and
checked them using both workflows. The results
were identical, which validated our approach and
implementation.

4. Conclusion

4.1 Discussion

Our work was exploratory in nature; we set out to
gauge the potential of formal verification techniques
in the context of industrial design of hybrid systems.
This is why the integration of our framework with the
existing industrial tools is not as complete as
possible. The same is true of our specific analysis
results, which lack in breadth. Nevertheless, we can
report the following several conclusions with
conviction.

Simulink diagrams are not formal enough. Simulink
diagrams, like the one formalised during the course
of this project, do not contain enough information on
their own to make the formalisation process fully
automatic. This is because Simulink was primarily
used as a simulation engine, and actually not as a
formal modelling language. Quite often, Simulink
signals do not carry any information about their
domain (range), units, and their loose type
information cannot be reliable upon. Whilst this
information can be partially recovered from
supporting documents, such as Interface Control
Documents (ICDs), this still requires human
intervention. In summary, Simulink is a modelling
tool used for simulations that can also serve as a
general-purpose modelling and formal analysis
environment if the diagrams carry more annotations
on their lines of input and output ports as well as
interface boundaries.

S-functions are difficult to verify. While native
Simulink blocks have reasonably clear meaning
(function) and can be readily represented in any
formal setting, the semantics of S-functions is often
unclear. The supporting documentation, while
perhaps sufficient for everyday modelling, falls short
of the rigour required for formal verification. As a
result, the engineer performing formal verification of
a diagram containing S-functions must access, or
possess expert knowledge of this subject, in order to
write tailored representations of their behaviour in
the target formalism. Moreover, we have found that
the use of S-functions promotes the lack of rigour
described in the preceding paragraph.

Verification can be fully automated. The three
instances where human intervention in the formal
verification process was found to be necessary were:

(a) setting the proper types and ranges of
variables,

(b) reformulating the textual requirements in the
constrained language, and

(c) linking the basic propositions with model
signals.

 Page 6/10

We believe that all three human interventions can be
eliminated. Elimination of (a) can be achieved
through more standardised and rigorous modelling
practices; (b) can be eliminated by introducing a
standard requirement language, where textual
requirements can be parsed by a computer directly;
and (c) can be performed during the modelling
stage.

Medium-sized models can be verified efficiently. The
autobrake model analysed here consisted of 1288
blocks. The translation to HySAT had 658 variables,
238 constants and 822 constraints. The
requirements could be verified in a matter of
seconds on a desktop computer. While these results
are encouraging, some sensitivity to the number of
variables and to their domains was found. Hence, we
believe that models that are larger by an order of

magnitude than the autobrake model — for example,
the full A350 BSCS model — cannot be practically
verified, unless strict typing and range discipline is
followed (see the paragraph on Simulink) and/or
advanced modular (compositional) verification
techniques are developed.

Requirements exhibit different levels of ambiguity.
Most of the autobrake requirements we analysed
were ambiguous, in the sense that it was possible to
assign more than one distinct formal representations
to a single requirement. Some of them were simply
too high-level to be translated to the language of
arithmetical formulae; others had insufficient
indication of their applicability domain; finally, some
merely lacked proper tolerance levels. Elimination of
these ambiguities, at least of the two latter kinds,
would greatly increase the potential of automated
requirement verification.

High-level programming languages should be used
for verification tools. The Simulink to HySAT
translator was implemented using TLC, an internal
Simulink scripting language. Lack of advanced
programming concepts in TLC makes it difficult to
mirror the abstract mathematical constructs in the
code, and consequently produces monolithic,
inflexible software. In contrast, the use of Haskell for
requirement analysis proved here to be the right
choice because the result was a flexible and stable
program. Of course, these remarks are not intended
to cast doubt on the usefulness of TLC within its
intended application areas: e.g. code generation (C,
FORTRAN).

4.2 Future work

We have identified the following directions for further
development:

Grammar inference It is possible — albeit to a limited

degree — to determine a grammar, given a sufficient
number of sample sentences it produces, by a
process known as grammar induction or grammar
inference. Given the abundance of example
requirements, it is conceivable to use this theory to
build a requirement grammar from these examples
instead of just postulating one, as we did. The main
advantage of this approach is that the resulting
grammar would produce sentences identical to the
requirements as they are currently used. The main
downside is that not all productions of this
automatically generated grammar would correspond
to any discernible logical or temporal operators.

Compositional verification Our estimates of the
computational load of formal testing of requirements
suggest that large avionics/mechatronics models
cannot be cost-effectively tested yet with existing
methods. Developing modular (also called
compositional) verification techniques, where a
requirement is verified for submodels and the
verification results are then combined to yield an
assessment of the whole model, would make it
possible to also verify large models. While this is an
extremely difficult and ambitious challenge in
general, it should nevertheless be at least
undertaken in a limited industrial scope.

Context-sensitive grammars In this work, we used a
context-free grammar, mainly because of their
conceptual and theoretical simplicity. However, it
may be the case that a more complex context-
sensitive grammar is a better fit for an industrial-
quality requirements language. The first step
towards settling of this question should be a detailed
analysis of the fine structure of actual requirements.

5. Acknowledgements

This work was partially funded by the EPSRC
through PhD Internship Programme of the UK
Knowledge Transfer Network for Industrial
Mathematics (KTN-Mathematics) 2009 and funded
and supported by the Airbus Systems Methods and
Tools department within an ongoing internal project
in the Filton (Bristol, UK) group.

We thank all the reviewers of previous draft of this
paper for their supportive and guiding comment.

 Page 7/10

6. References

[1] Advisory Council for Aeronautics Research in
Europe, “Strategic Research Agenda Volume 1”,
“Strategic Research Agenda Volume 2” Oct 2004

access from
http://www.acare4europe.org/html/documentation.
asp

[2] Clarke, Grumberg, and Peled: ―Model Checking”,

MIT Press, 2000.

[3] A. Cimatti, E. M. Clarke et al.: ―NuSMV 2: An

OpenSource Tool for Symbolic Model Checking”
In Proceedings of International Conference on
Computer-Aided Verification (CAV 2002).
Copenhagen, Denmark, July 27-31, (2002).

[4] M.Au. Fortes Da Cruz: ―Two-ways traceability

between Requirements Based Engineering and
Model Based Engineering using DOORS and
SCADE tools”, SCADE USERS Conference,
Toulouse (France, 2006).

[5] M. Fränzle: Verification of Hybrid Systems, CAV

2007: 38 (2007).

[6] M.Fränzle et. al.: "Efficient Solving of Large Non-
linear Arithmetic Constraint Systems with
Complex Boolean Structure", JSAT 1(3—4), 2007

[7] S. P. Miller: ―Formal Methods for Critical

Systems”. FMICS 2008: 1, (2008).

[8] S. P. Miller: ―Bridging the Gap Between Model-

Based Development and Model Checking”.
TACAS 2009: 443-453, (2009).

[9] S.P. Miller et al: ―Formal Verification of the

AAMP5 Microprocessor: A Case Study in the
Industrial Use of Formal Methods‖. WIFT '95:

IEEECS, Boca Raton, FL. April, 1995, Pages 2–
16.

7. Appendices

Appendix 1: Grammar

The definition of the formal grammar underlying the requirements analysis is in the format of Happy

(http://haskell.org/happy), a parser generator for Haskell. The first main part, beginning with the %token

directive, contains the syntactic atoms processed by the grammar. The second, captioned ―production rules‖,
effectively defines the form of every correct sentence produced by the grammar. This file can be fully
automatically compiled to a parser compatible with Haskell.

%%

-- Production rules

Req | assert Req { Assert $1 $2 }

 | not Req { Not $1 $2 }

 | always Req { Always $1 $2 }

 | never Req { Never $1 $2 }

 | possible Req { Possible $1 $2 }

 | impossible Req { Impossible $1 $2 }

 | alwayspossible Req { AlwaysPossible $1 $2 }

 | neverpossible Req { NeverPossible $1 $2 }

 | if Req then Req else Req { IfThenElse ($1, $3, $5) $2 $4 $6 }

 | Req unless Req { Unless $2 $1 $3 }

 | Req until Req { Until $2 $1 $3 }

 | Req after Req { After $2 $1 $3 }

 | Req while Req { While $2 $1 $3 }

 | Req and Req { And $2 $1 $3 }

 | Req or Req { Or $2 $1 $3 }

 | sentence { Sentence $1 }

 | error { Error "???" } -- (*)

%name parser Req
%tokentype { Token }
%error { parseError }

-- Lexical tokens

%token assert { TokenAssert $$ }
 not { TokenNot $$ }

 always { TokenAlways $$ }

 never { TokenNever $$ }

 possible { TokenPossible $$ }

 impossible { TokenImpossible $$ }

 alwayspossible { TokenAlwaysPossible $$ }

 neverpossible { TokenNeverPossible $$ }

 if { TokenIf $$ }

 then { TokenThen $$ }

 else { TokenElse $$ }

 unless { TokenUnless $$ }

 until { TokenUntil $$ }

 after { TokenAfter $$ }

 while { TokenWhile $$ }

 and { TokenAnd $$ }

 or { TokenOr $$ }

 sentence { TokenSentence $$ }

-- Precedence and associativity of tokens.

 Tokens mentioned early bind weakly.

%right assert not
%right always never
%right possible impossible
%right alwayspossible neverpossible
%left if then else
%left unless until after while
%left or and

 Page 8/10

Appendix 2: Model & Formal requirements

A snippet of the HySAT input file encoding the A350 autobrake model together with a requirement. The file has
four sections: the first (DECL) defines the model variables. Observe that some of them are actually constants,
thereby reducing the state space; variables are annotated with the name of the Simulink block to whose output
they correspond; the variable marked with the asterisk (*) is involved in a feedback loop, and thus its type and
range are set to the most conservative values. The second section (INIT) defines the constraints linking the
variables in the initial state of the model, while the third (TRANS) defines the pre- and post-conditions to be met
during the evolution of the model. Observe how the initial state conditions are duplicated in order to ensure model
consistency after a transition takes place. Finally, the last section (TARGET) contains the target formula produced
by the Requirement Analyser. As indicated by the appropriate annotation, the requirement in question is valid iff
the target formula is unsatisfiable.

DECL

 define x0 = 3.5; -- AP2633_IN_LBP4

 define x1 = 3.0; -- AP2633_IN_LBP2

 define x2 = 2.5; -- AP2633_IN_LBP1

 define x3 = 2.0; -- AP2633_IN_LBP3

 int [0, 1] y27x9; -- MRTRIG1

 ...

 int [0, 1] y27x136; -- OU1

 define y27x137 = 0; -- Ground3

 int [0, 1] y27x138; -- AB COMMAND

 float [-9999, 9999] y27x139; -- AB COMMAND (*)

 ...

 int [0,1] prev_y27x9;

 ...

INIT

 ...

 (y27x136 >= 1) <-> (1 - y27x34 >= 1);

 ...

TRANS

 ...

 (y27x136' >= 1) <-> (1 - y27x34' >= 1);

 prev_y27x9' = y27x9;

 ...

TARGET

 (!(y27x136 <= 0)) and (((1 - prev_y27x9) * y27x9) >= 1); -- Refute

Appendix 3: Bounds

Propagation of types and ranges of variables through an example signal processing diagram involving feedback.
The method requires all the information about the inputs to infer type and range of the output and thus it fails for
all the variables involved in the feedback loop (Table 1). The solution is to manually specify the type and range of
one of those variables and run the algorithm again (Table 2).

Round 0 Round 1 Round 2 Round 3,4,...

x: float in [0,5]

y: float in [-5,0]

z: ?

p: ?

q: ?

r: ?

x: float in [0,5]

y: float in [-5,0]

z: float in [-5,5]

p: ?

q: ?

r: ?

x: float in [0,5]

y: float in [-5,0]

z: float in [-5,5]

p: ?

q: ?

r: ?

x: float in [0,5]

y: float in [-5,0]

z: float in [-5,5]

p: ?

q: ?

r: ?

Table 1: Propagation of types and bounds through a signal processing diagram involving feedback.

 Page 9/10

Round 0 Round 1 Round 2 Round 3

x: float in [0,5]

y: float in [-5,0]

z: ?

p: ?

q: ?

r: float in [-20,20]

x: float in [0,5]

y: float in [-5,0]

z: float in [-5,5]

p: ?

q: ?

r: float in [-20,20]

x: float in [0,5]

y: float in [-5,0]

z: float in [-5,5]

p: float in [-25,25]

q: ?

r: float in [-20,20]

x: float in [0,5]

y: float in [-5,0]

z: float in [-5,5]

p: float in [-25,25]

q: float in [-20,20]

r: float in [-20,20]

Table 2: Propagation of types and bounds through the same diagram, this time with manual injection of type and
bounds into the feedback loop.

Appendix 4: Session

A recording of a short command-line session with the requirement analyser. Seven commands are issued (bold
lines numbered in square brackets). Commands [1] and [2] display two files containing the requirement to be
verified; in the second case, the requirement has an empty ―while‖ clause, which makes it nonsensical. The third
command displays the basic property--variable condition association table. Command [4] invokes the analyser on
the correct requirement, and the result is a logical breakdown of the sentence, together with the HySAT target
formula. Commands [5] and [6] produce CTL and LTL target formulae, respectively. Finally, an attempt to analyse
a grammatically incorrect requirement is made, and results in an appropriate error message [7].

[1] marek@belafonte:~$ cat req

it shall always be true that the autobrake is disarmed after the aircraft takes off

[2] marek@belafonte:~$ cat malformed_req

it shall always be true that the autobrake is disarmed after the aircraft takes off while

[3] marek@belafonte:~$ cat leaves

the autobrake is disarmed = y27x136 <= 0

the aircraft takes off = (1 - y27x9) * y27x9' >= 1

[4] marek@belafonte:~$./analyser.exe -R req -L leaves

This is the Requirement Analyser.

Results:

it shall always be true that the autobrake is disarmed after the aircraft takes off:

it shall always be true that

 the autobrake is disarmed

 after

 the aircraft takes off

Refute (BMC mode): (!(y27x136 <= 0)) and (((1 - prev_y27x9) * y27x9) >= 1);

==

[5] marek@belafonte:~$./analyser.exe -R req -L leaves -T ctl

This is the Requirement Analyser.

Results:

it shall always be true that the autobrake is disarmed after the aircraft takes off:

it shall always be true that

 the autobrake is disarmed

 after

 the aircraft takes off

AG (((1 - y27x9) * y27x9' >= 1) -> (AX ((1 - y27x9) * y27x9' >= 1)))

==

 Page 10/10

[6] marek@belafonte:~$./analyser.exe -R req -L leaves -T ltl

This is the Requirement Analyser.

Results:

it shall always be true that the autobrake is disarmed after the aircraft takes off:

it shall always be true that

 the autobrake is disarmed

 after

 the aircraft takes off

G (((1 - y27x9) * y27x9' >= 1) -> (X (y27x136 <= 0)))

==

[7] marek@belafonte:~$./analyser.exe -R malformed_req -L leaves

This is the Requirement Analyser.

==

it shall always be true that the autobrake is disarmed after the aircraft takes off while:

it shall always be true that

 the autobrake is disarmed

 after

 the aircraft takes off

 while

 ???

This requirement is structurally malformed.

==

8. Glossary

DPLL Davis-Putnam-Logemann-Loveland
backtracking algorithmic procedure

HySAT An implementation of an SMT
technique focusing on hybrid and non-
linear aspects of the analysed
problems.

ICD Interface Control Document.

LTL Linear Temporal Logic. A formal
mathematical language for expressing
properties of deterministic systems.

SAT Satisfiability

SLDV Simulink Design Verifier. An add-on to
Simulink and Stateflow providing basic
model verification capabilities.

SMT Satisfiability Modulo Theories. A field of
theoretical computer science
concerned with algorithms for solving
complex arithmetical decision problems
using background knowledge of
structures involved (e.g. associativity of
addition).

SMV Symbolic Model Verifier

TLC Target Language Compiler. An internal
Simulink code generation language.

