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Abstract: 
It is commonly accepted in the academic community 
that if the use of formal methods were more widely 
spread and properly supported, then their use would 
provide substantial development time and cost 
benefits for the engineering of safety-critical 
systems. 
The present work builds upon an increasing 
imperative to improve continuously the process, 
methods techniques and tools for analysing the 
functions/behaviours allocated to hybrid systems in 
the chosen avionics and mechatronics technologies. 
Formalisation of requirements and formal expression 
of models remain the two major representational 
bottlenecks impeding the wider industrial usage. 
Our investigations suggest that relatively minor 
improvements to the prevailing industrial practices 
can help to overcome these bottlenecks and to start 
benefitting from the power of formal methods. 
In this paper, we present a novel method and 
workflow for formally analysing engineering 
specifications of hybrid systems that, semi-
automatically, bring together requirement and 
domain engineering model. Both the method and 
workflow are validated with a case study of the 
Airbus A350 autobrake model. 
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1. Introduction and industrial motivation 

Introduction: 
For more than three decades, the aerospace 
industry has been using digital computers as an 
integral part of the civilian aircraft's flying safety-
critical equipments. In turn, the proliferation of digital 
computers has created an increasing imperative to 
continuously improve the process, methods 
techniques and tools for analysing the functions 
allocated to systems in their chosen technologies. 
The present work builds on this imperative by 
exploring ways and means for increasing the 
automation of formal verification. The proposed 
automation is through translation of requirements, 
and their respective design models, into formal logic 
transcriptions that can be merged and analysed from 
the same file. 
The systems of interest are hybrid systems; these 
are multi-physics systems that exhibit continuous-
time and discrete-time behaviours, with event-driven 
behaviours emanating from the embedded software 
components. 
Naturally, hybrid functions are allocated to, and 
implemented by, hybrid systems. Further, the term 
hybrid function is used to describe those functions 
that feature both continuous and discontinuous 
functions from the multi-physics domain as well as 
the discrete-event functions from the embedded real-
time control software applications. 
Design is constructed through using models of both 
the physical elements (using CAD tools) and the 
avionics elements (using CASE tools). Conversely, 
the requirements have evolved from being disjoint 
sets of objective in structured documents, to 
integrated databases of indexed and linked textual 
objectives for validation and verification. 
Applying formal methods to verification of embedded 
software for avionics requires constructing a 
coherent formal set of propositions that precisely 
captures the textual assertions and property 
objectives into formal logic propositions. 
Besides, the engineers also need to envision 
consistently the behavioural logic of their models into 
a formalised set of declarations, relations, 
constraints and state transitions. 
Before any meaningful formal assessments can be 
conducted, both sets of formal sentences―models 
constrained by requirements, and the attached 
objectives―must be correctly merged and prepared 
for analysis using a model checker. 



 Page 2/10 

Industrial motivation: 

The Advisory Council for Aeronautics Research in 
Europe (ACARE) was set up in June 2001 to 
develop and maintain a Strategic Research Agenda 
(SRA) for aeronautics in Europe. This was referred 
to as the ACARE 2020 Vision. By 2004, ACARE 
identified five challenges and six high-level Target 
Concepts. These were gathered in two volumes [1]. 
 
This work aims to provide some contribution to the 
following three ACARE challenges: 

a) The Challenge of Quality and Affordability: 
The Quality of the product is both its 
attributes and its properties; the attributes 
are subjectively assigned by the observer, 
whilst the properties are its intrinsic 
characteristics. We focus on the extent to 
which these intrinsic characteristics of the 
product fulfil its requirements. 
Affordability is also a subjective attribute; 
however, from the perspective of the 
manufacturers, it results from the ability to 
price the product correctly. Controlling the 
cost of Design, Development and Build 
allows the manufacturer to price the product 
for the market. Specifying the product 
concisely, so that the supply chain produces 
the required products, is a key contributor to 
affordability. 

b) The Challenge of Safety 
Safety is the topmost driver for the 
aeronautics industry. The notions of Safety 
emerge from the behaviour of the system-
elements and their interactions with their 
operations environment. In turn, the 
behaviour of the product emerges from the 
behaviour of its parts and their interactions. 
We focus on the automatic assessment of 
those safety properties that are allocated to 
the product. As one of the contributors to 
meeting the Challenge of Safety, ACARE 
identifies ―Increase depth of product‘s 
dependability assessments‖ during the 
Design, Operation and Maintenance phases. 
We focus on increasing the depth of the 
systems dependability during the design 
phase. 

c) The Challenge of Air Transport System 
Efficiency 
Improvements in the efficiency of the ATS 
effects, and is affected by, the reliability of 
the components that constitute the system. 
An aircraft is a component of the Air 
Transport Systems (ATS). From an aircraft 
manufacturers‘ perspective, the aircraft must 
be one of the most reliable components of 
the ATS. Further, the systems that constitute 

the aircraft must be reliable as they, in turn, 
contribute to the reliability of the aircraft. 

The remaining two challenges; the Challenge of the 
Environment and the Challenge of Security are 
outside the scope of this work. 
 
In contribution to this industrial context, we address: 

 The impediments that occur between the textual 
requirements and their manually interpreted 
formal expressions. The effort of interpretation is 
time and resource consuming, which defeats the 
object right from the start. One way to clear this 
bottleneck is to structure the engineering domain 
text and automate the formal translation. 

 The need to assess both the continuous and 
discrete state space, and path of computations. 
Aircraft systems, such as the braking system, 
implement an aggregated set of hybrid functions 
in their chosen technologies of hardware, 
software and physical components, which are 
sensed, controlled and commanded. The 
Domain and Safety & Reliability Engineers 
interpret the normal and abnormal behaviours 
that lead to different envisioning of the models. A 
common and purpose-specific set of envisioning 
rules is necessary to assess the different 
perspectives of a system, for example, 
addressing a common V&V and safety purpose. 

 
In order to address these areas this paper is 
organised into three parts.  The first part, presented 
in Section 2, describes the formalisation of the 
constraints and properties of the models. The 
second part, presented in Section 3, describes the 
case study and a validation of the results. The final 
part, presented in Section 4, concludes with a 
discussion of our findings and suggests further work. 

2. Formalising models and their properties 

In order to analyse avionics models against design 
requirements automatically, it is necessary to 
remove all ambiguity from both areas. Furthermore, 
the resulting formal versions of models and 
requirements have to be compatible. This presents 
the non-trivial task of choosing the formal platform 
on which to conduct our analysis. Because the 
functions we aim to analyse are hybrid and non-
linear, the formal framework has to be able to 
faithfully capture these two concepts. 

2.1 Formal frameworks 

A theory, a notation, a language and a platform 
support each of the formal frameworks below. The 
maturity of the first two frameworks led to industrial 
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applications in the area of hardware verification (e.g. 
Collins proprietary AAMP5 Microprocessor) [9]. 

Design Verifier (SLDV, DV plugin) [4]: 

SLDV is an option for the MathWorks 
MATLAB/Simulink

©
 and the SCADE

©
 tool set. It 

performs an exhaustive formal analysis of dataflow 
and controlflow models, restricted to the interface 
boundaries and to the scope of the relevant selected 
set of sub-systems or functional operators. The 
model coverage assessment is deduced from the 
analysis, which follows from that scope assumption. 
Dataflow refers to the Simulink and SCADE 
approach to modelling functions. 
Controlflow refers to Stateflow/SSM approach to 
modelling behaviours and mode logic with 
transitions. 
SLDV/DV can confirm or refute the consistency and 
correctness of Simulink/Stateflow or SCADE/SSM 
models with respect to the given properties. Domain 
engineers specify these properties directly in a 
Companion Observer Block Diagram, as claims to 
be guaranteed from assumptions about the interface. 
The constraints are specified in the models using 
assertion blocks. 

NuSMV (LTL/CTL) [3]: 

NuSMV is a symbolic model checker that originated 
from the re-design, re-implementation and extension 
of CMU SMV; a BDD-based model checker originally 
developed at CMU [McMillan 1993]. The input 
language of NuSMV is designed to take a 
description of Finite State Machines (FSM).  
The types of FSM can be completely synchronous to 
completely a-synchronous, and can feature full 
details up to more abstraction. NuSMV specifications 
are expressed in either of two different temporal 
logics: Computation Tree Logic CTL, and Linear 
Temporal Logic LTL extended with Past Operators. 
NuSMV evaluates CTL and LTL specifications in 
order to determine their truth or falsity in the FSM. If 
a specification does not to hold, then NuSMV 
constructs and presents a counterexample, i.e. a 
trace of the FSM that refutes the property. 

HySAT [5, 6]: 

In essence, satisfiability (SAT) is the problem of 
determining if the variables of a given Boolean 
formula can be assigned in a way that the formula 
evaluates to TRUE. Martin Davis and Hilary Putman 
(DP) devised the first algorithm in 1960. 
In 1962, George Logemann and Donald W. 
Loveland proposed a refined DP as DPLL-algorithm. 
HySAT is a SAT solver developed at the University 
of Oldenburg. It checks for satisfiability of 
arithmetical formulae that might involve non-linear 
and transcendental functions. HySAT processes 

elements of discrete and continuous domains (e.g. 
integer and real) as intervals on the real line and 
thus the solver is particularly suitable for analysis of 
hybrid functions. 
HySAT integrates the DPLL-based SAT proof search 
algorithm with the interval-based arithmetic 
constraint propagation. This allows HySAT to take 
advantage of handling conventional model checking 
whilst handling similarly large Boolean combinations 
of non-linear arithmetic constraints involving 
transcendental functions. 
Because the functions under analysis are hybrid and 
non-linear, the formal framework must faithfully 
capture these two concepts. Theory of hybrid 
satisfiability, and in particular the SMT solver 
extension in HySAT, appears suitable to solving this 
class of problems. 
 
HySAT accepts input files consisting of four sections. 
The first three define the dynamic model that is the 
subject of analysis by listing all the state variables 
and the relationships between them (called 
constraints). The last section contains the target 
formulae that encode questions about the present 
and future behaviour of the model. 
Design requirements are represented as target 
formulae and models as sets of constraints. This 
achieves the integration of the two domains; 
described in more detail in the next sections. 
 
The choice of HySAT was based upon the following 
three reasons. Firstly, it handles discrete and 
continuous variables in a uniform fashion, namely as 
intervals on the real line; therefore, it provides an 
elegant and powerful (through the use of interval 
arithmetic) framework for hybrid analysis. Secondly, 
it supports the use of non-linear as well as 
transcendental operators in constraints and targets, 
and hence copes with the inherently non-linear 
characteristics of physical laws. Finally, it supports 
relatively free mixing of Boolean and arithmetical 
constructs, which are useful when analysing signal-
processing diagrams. For a detailed comparison of 
HySAT with other satisfiability software, see [2]. 
 
Certain analysis and verification tasks can be 
performed directly by Design Verifier (DV) [4]. Whilst 
a useful tool, DV is not able to handle the complex 
non-linearities inherent in the majority of the 
requirements that industrial engineers deal with; 
further Simulink and Stateflow are not based upon a 
synchronous language. 

2.2 Formalising a Dataflow block diagram model 

Simulink: The starting points of the model 
formalisation tasks are Simulink (*.m files) design 
specifications (*.mdl files). Here, the point of interest 
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is on signal-processing diagrams. Such diagrams 
are translated to HySAT model specifications. More 
precisely, a state variable is assigned at first to every 
line in the model. Then, one or more constraints are 
produced for every block, hence linking variables 
corresponding to its input and output signals in a 
way that reflects the block's intended behaviour. 
Finally, a limited type and range inference for the 
output variables is achieved. A by-product of this 
translation is an association table of signals and 
variables, which proved very useful for debugging. 

As an example, consider a summation block with two 
input signals and one output signal. In the first step, 
variables for the signals are created; say „x‟ and ‗y‟ 
for the inputs and ‗z‟ for the output. The second step 
yields the invariant constraint „x+y=z‟, which 
obviously reflects the normal behaviour of the 
summation block. Finally, assuming that input 
signals (x, y) are floats with ranges ([0,100], [-
50,50]), the type of the output signal, z, is inferred 
also to be a float, with the range ([-50, 150]). An 
output might be an input to another block; such 
information can also be used to infer type and range 
of the output of that block. 
 
Implementation: The procedure described above 
was implemented using the Target Language 
Compiler (TLC), a code generation language for 
Simulink, allowing annotation of the model files and 
generation of a coded format file in HySAT format. 
 

 
The Simulink to HySAT translation consists of three 
stages using TLC: 
(a) Pre-processing of the Simulink model (setup.tlc) 
(b) Creating appropriate constraints (blocks.tlc) 
(c) Inferring the types and ranges of variables 

(bounds.tlc). 
 

2.3 Formalising constraints from requirements 

Formalisation starts with a design requirement given 
as an English sentence. The ideal route to take 
would be to automatically parse, recognize and 
translate such sentences; however, current state of 
natural language processing makes this an 

impractical — if not infeasible — option. As the first 
step, therefore, requirements are re-written into an 
equivalent, human-readable form; however, a form 
that is sufficiently constrained and parsimonious to 
be machine-readable. In a second step, a procedure 

was devised to automatically translate such semi-
formal sentences to Linear Temporal Logic (LTL) 
expressions. Finally, those sentences were 
automatically translated into the HySAT target 
formulae. 
 
Step 1: A formal grammar is built to make 
requirements expressed in natural language to be 
machine-readable. A formal grammar is a set of 
rules (called productions) for generating text by 
successive rewriting a pre-defined string. Grammars 
generate sentences that resemble original natural 
language requirements. A computer can understand 
(parse) such sentences precisely because a 
grammar constrains their structure (syntax). To give 
an example, the original requirement « The 
autobrake shall disarm after take-off » becomes « It 
shall always be true that the autobrake is not 
armed after the aircraft takes off. » Here, this 
translation is done manually but can be enhanced by 
a user-interface to guide the requirements engineer 
(Appendix 1). 
 
Step 2: Once the semi-formal requirement is parsed, 
it is possible to identify the atomic statements, i.e. 
those that are the most basic assertions about the 
system. In the above example, these are « the 
autobrake is not armed » and « the aircraft takes 
off ». We manually match them to appropriate 
conditions on state variables, such as 
„AB_DISARMED = TRUE‟. Having done that, we use 
the internal structure of the semi-formal 

requirement — constructed using the grammar  — to 
build an LTL expression encoding this requirement. 
This is further facilitated by the fact that most 
productions directly correspond to specific LTL 
constructs (Appendix 2). 
 
Step 3: The translation of LTL expressions to HySAT 
target formulae is relatively straightforward and 
amounts to little more than syntactic manipulations. 
Here we have to bear in mind, however, that certain 
LTL expressions are too complex to have a HySAT 
representation. Moreover, it is possible that the 
requirement holds when the target formula is 
unsatisfiable, and dually, fails when the formula can 
be satisfied. These cases are properly reported 
during the automated translation (Appendix 4). 
 
Implementation: The procedure detailed above was 
implemented as a standalone program using the 
functional programming language Haskell. The 
program requires three input files; one containing the 
semi-formal requirements, one matching the atomic 
sentences to simple conditions on state variables 
and one containing the HySAT model definition 
produced from the Simulink diagram. The program 
then outputs the complete HySAT input file, ready for 
analysis. 
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Architecture of the Requirement Analyser: 
 

 
The main program file accepts two input files: i.e. 
requirements (reqs) and variable/condition 
association table (leaves), and communicates with 
the different target language specifications via a 
standardised interface (interface.hs) 

3. Formal assessment of hybrid functions 

3.1 Case study using HySAT 
 
The Airbus A350 autobrake analysis model consists 
of 1288 Simulink blocks and a similar number of 
lines. A HySAT model consisting of 658 variables, 
238 constants and 822 constraints were obtained 
after the translation. The type and range inference 
procedures were successful for 81% of signals; the 
remaining 19% were involved in feedbacks, where 
the naïve iterative method failed. Manually inserting 
proper types and bounds in the loops and re-running 
the algorithm refined this method with a final result 
(Appendix 3). Three requirements were positively 
verified on this model. Both the formalisation and 
verification tasks were completed within minutes on 
a standard desktop computer (Appendix 4). 
 
3.2 Validation using Gryphon/NuSMV 
 
The formalisation of Simulink models can be 
performed using more established software tools. 
The Reactis tool (by Reactive Systems) pre-
processes the models to an intermediate format 
recognizable by the Gryphon tool (by Rockwell 
Collins) [7]. Gryphon produces a formal NuSMV 
specification and runs the NuSMV model checker. 
This NuSMV based workflow supports a wide range 
of Simulink blocks, but has one crucial shortcoming 

from our point of view — it does not yet fully support 
continuous variables, and hence hybrid systems.  
In order to compare our approach with the Reactis, 
Gryphon and NuSMV workflow, we have isolated a 
fragment of the A350 braking and control system 
where all but one variable are discrete, and 
discretised the only continuous one. We then wrote 
several study requirements for this module and 
checked them using both workflows. The results 
were identical, which validated our approach and 
implementation. 

4. Conclusion 

4.1 Discussion 
 
Our work was exploratory in nature; we set out to 
gauge the potential of formal verification techniques 
in the context of industrial design of hybrid systems. 
This is why the integration of our framework with the 
existing industrial tools is not as complete as 
possible. The same is true of our specific analysis 
results, which lack in breadth. Nevertheless, we can 
report the following several conclusions with 
conviction. 
 
Simulink diagrams are not formal enough. Simulink 
diagrams, like the one formalised during the course 
of this project, do not contain enough information on 
their own to make the formalisation process fully 
automatic. This is because Simulink was primarily 
used as a simulation engine, and actually not as a 
formal modelling language. Quite often, Simulink 
signals do not carry any information about their 
domain (range), units, and their loose type 
information cannot be reliable upon. Whilst this 
information can be partially recovered from 
supporting documents, such as Interface Control 
Documents (ICDs), this still requires human 
intervention. In summary, Simulink is a modelling 
tool used for simulations that can also serve as a 
general-purpose modelling and formal analysis 
environment if the diagrams carry more annotations 
on their lines of input and output ports as well as 
interface boundaries. 
 
S-functions are difficult to verify. While native 
Simulink blocks have reasonably clear meaning 
(function) and can be readily represented in any 
formal setting, the semantics of S-functions is often 
unclear. The supporting documentation, while 
perhaps sufficient for everyday modelling, falls short 
of the rigour required for formal verification. As a 
result, the engineer performing formal verification of 
a diagram containing S-functions must access, or 
possess expert knowledge of this subject, in order to 
write tailored representations of their behaviour in 
the target formalism. Moreover, we have found that 
the use of S-functions promotes the lack of rigour 
described in the preceding paragraph. 
 
Verification can be fully automated. The three 
instances where human intervention in the formal 
verification process was found to be necessary were: 

(a) setting the proper types and ranges of 
variables, 

(b) reformulating the textual requirements in the 
constrained language, and 

(c) linking the basic propositions with model 
signals. 
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We believe that all three human interventions can be 
eliminated. Elimination of (a) can be achieved 
through more standardised and rigorous modelling 
practices; (b) can be eliminated by introducing a 
standard requirement language, where textual 
requirements can be parsed by a computer directly; 
and (c) can be performed during the modelling 
stage. 
 
Medium-sized models can be verified efficiently. The 
autobrake model analysed here consisted of 1288 
blocks. The translation to HySAT had 658 variables, 
238 constants and 822 constraints. The 
requirements could be verified in a matter of 
seconds on a desktop computer. While these results 
are encouraging, some sensitivity to the number of 
variables and to their domains was found. Hence, we 
believe that models that are larger by an order of 

magnitude than the autobrake model — for example, 
the full A350 BSCS model — cannot be practically 
verified, unless strict typing and range discipline is 
followed (see the paragraph on Simulink) and/or 
advanced modular (compositional) verification 
techniques are developed. 
 
Requirements exhibit different levels of ambiguity. 
Most of the autobrake requirements we analysed 
were ambiguous, in the sense that it was possible to 
assign more than one distinct formal representations 
to a single requirement. Some of them were simply 
too high-level to be translated to the language of 
arithmetical formulae; others had insufficient 
indication of their applicability domain; finally, some 
merely lacked proper tolerance levels. Elimination of 
these ambiguities, at least of the two latter kinds, 
would greatly increase the potential of automated 
requirement verification. 
 
High-level programming languages should be used 
for verification tools. The Simulink to HySAT 
translator was implemented using TLC, an internal 
Simulink scripting language. Lack of advanced 
programming concepts in TLC makes it difficult to 
mirror the abstract mathematical constructs in the 
code, and consequently produces monolithic, 
inflexible software. In contrast, the use of Haskell for 
requirement analysis proved here to be the right 
choice because the result was a flexible and stable 
program. Of course, these remarks are not intended 
to cast doubt on the usefulness of TLC within its 
intended application areas: e.g. code generation (C, 
FORTRAN). 
 

4.2 Future work 
 
We have identified the following directions for further 
development: 
 

Grammar inference It is possible — albeit to a limited 

degree — to determine a grammar, given a sufficient 
number of sample sentences it produces, by a 
process known as grammar induction or grammar 
inference. Given the abundance of example 
requirements, it is conceivable to use this theory to 
build a requirement grammar from these examples 
instead of just postulating one, as we did. The main 
advantage of this approach is that the resulting 
grammar would produce sentences identical to the 
requirements as they are currently used. The main 
downside is that not all productions of this 
automatically generated grammar would correspond 
to any discernible logical or temporal operators. 
 
Compositional verification Our estimates of the 
computational load of formal testing of requirements 
suggest that large avionics/mechatronics models 
cannot be cost-effectively tested yet with existing 
methods. Developing modular (also called 
compositional) verification techniques, where a 
requirement is verified for submodels and the 
verification results are then combined to yield an 
assessment of the whole model, would make it 
possible to also verify large models. While this is an 
extremely difficult and ambitious challenge in 
general, it should nevertheless be at least 
undertaken in a limited industrial scope. 
 
Context-sensitive grammars In this work, we used a 
context-free grammar, mainly because of their 
conceptual and theoretical simplicity. However, it 
may be the case that a more complex context-
sensitive grammar is a better fit for an industrial-
quality requirements language. The first step 
towards settling of this question should be a detailed 
analysis of the fine structure of actual requirements. 
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7. Appendices 

Appendix 1: Grammar 
 
The definition of the formal grammar underlying the requirements analysis is in the format of Happy 

(http://haskell.org/happy), a parser generator for Haskell. The first main part, beginning with the %token 

directive, contains the syntactic atoms processed by the grammar. The second, captioned ―production rules‖, 
effectively defines the form of every correct sentence produced by the grammar. This file can be fully 
automatically compiled to a parser compatible with Haskell. 

 

 

%% 

 

-- Production rules 

Req  | assert Req                { Assert $1 $2 } 

     | not Req                   { Not $1 $2 } 

     | always Req                { Always $1 $2 } 

     | never Req                 { Never $1 $2 } 

     | possible Req              { Possible $1 $2 } 

     | impossible Req            { Impossible $1 $2 } 

     | alwayspossible Req        { AlwaysPossible $1 $2 } 

     | neverpossible Req         { NeverPossible $1 $2 } 

     | if Req then Req else Req  { IfThenElse ($1, $3, $5) $2 $4 $6 } 

     | Req unless Req            { Unless $2 $1 $3 } 

     | Req until Req             { Until $2 $1 $3 } 

     | Req after Req             { After $2 $1 $3 } 

     | Req while Req             { While $2 $1 $3 }  

     | Req and Req               { And $2 $1 $3 } 

     | Req or Req                { Or $2 $1 $3 } 

     | sentence                  { Sentence $1 } 

     | error                     { Error "???" }  -- (*) 

 

 

%name parser Req         
%tokentype { Token } 
%error { parseError }   
 

-- Lexical tokens 

%token assert           { TokenAssert $$ } 
       not              { TokenNot $$ } 

       always           { TokenAlways $$ } 

       never            { TokenNever $$ } 

       possible         { TokenPossible $$ } 

       impossible       { TokenImpossible $$ } 

       alwayspossible   { TokenAlwaysPossible $$ } 

       neverpossible    { TokenNeverPossible $$ } 

       if               { TokenIf $$ } 

       then             { TokenThen $$ } 

       else             { TokenElse $$ } 

       unless           { TokenUnless $$ } 

       until            { TokenUntil $$ } 

       after            { TokenAfter $$ } 

       while            { TokenWhile $$ } 

       and              { TokenAnd $$ } 

       or               { TokenOr $$ } 

       sentence         { TokenSentence $$ } 

 

-- Precedence and associativity of tokens. 

   Tokens mentioned early bind weakly. 

%right assert not 
%right always never 
%right possible impossible 
%right alwayspossible neverpossible 
%left if then else 
%left unless until after while 
%left or and 
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Appendix 2: Model & Formal requirements 
 
A snippet of the HySAT input file encoding the A350 autobrake model together with a requirement. The file has 
four sections: the first (DECL) defines the model variables. Observe that some of them are actually constants, 
thereby reducing the state space; variables are annotated with the name of the Simulink block to whose output 
they correspond; the variable marked with the asterisk (*) is involved in a feedback loop, and thus its type and 
range are set to the most conservative values. The second section (INIT) defines the constraints linking the 
variables in the initial state of the model, while the third (TRANS) defines the pre- and post-conditions to be met 
during the evolution of the model. Observe how the initial state conditions are duplicated in order to ensure model 
consistency after a transition takes place. Finally, the last section (TARGET) contains the target formula produced 
by the Requirement Analyser. As indicated by the appropriate annotation, the requirement in question is valid iff 
the target formula is unsatisfiable. 
 

DECL 

 define x0 = 3.5;    -- AP2633_IN_LBP4 

 define x1 = 3.0;    -- AP2633_IN_LBP2 

 define x2 = 2.5;    -- AP2633_IN_LBP1 

 define x3 = 2.0;    -- AP2633_IN_LBP3 

 int [0, 1] y27x9;    -- MRTRIG1 

 ... 

 int [0, 1] y27x136;   -- OU1 

 define y27x137 = 0;   -- Ground3 

 int [0, 1] y27x138;   -- AB COMMAND 

 float [-9999, 9999] y27x139;  -- AB COMMAND (*) 

 ... 

 int [0,1] prev_y27x9; 

 ... 

INIT 

 ... 

 (y27x136 >= 1) <-> (1 - y27x34 >= 1); 

 ... 

TRANS 

 ... 

 (y27x136' >= 1) <-> (1 - y27x34' >= 1); 

 prev_y27x9' = y27x9; 

 ... 

TARGET 

  (!(y27x136 <= 0)) and (((1 - prev_y27x9) * y27x9) >= 1); -- Refute 

 
Appendix 3: Bounds 
 
Propagation of types and ranges of variables through an example signal processing diagram involving feedback. 
The method requires all the information about the inputs to infer type and range of the output and thus it fails for 
all the variables involved in the feedback loop (Table 1). The solution is to manually specify the type and range of 
one of those variables and run the algorithm again (Table 2). 

Round 0 Round 1 Round 2 Round 3,4,... 

x: float in [0,5] 

y: float in [-5,0] 

z: ? 

p: ? 

q: ? 

r: ? 

x: float in [0,5] 

y: float in [-5,0] 

z: float in [-5,5] 

p: ? 

q: ? 

r: ? 

x: float in [0,5] 

y: float in [-5,0] 

z: float in [-5,5] 

p: ? 

q: ? 

r: ? 

x: float in [0,5] 

y: float in [-5,0] 

z: float in [-5,5] 

p: ? 

q: ? 

r: ? 

Table 1: Propagation of types and bounds through a signal processing diagram involving feedback. 
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Round 0 Round 1 Round 2 Round 3 

x: float in [0,5] 

y: float in [-5,0] 

z: ? 

p: ? 

q: ? 

r: float in [-20,20] 

x: float in [0,5] 

y: float in [-5,0] 

z: float in [-5,5] 

p: ? 

q: ? 

r: float in [-20,20] 

x: float in [0,5] 

y: float in [-5,0] 

z: float in [-5,5] 

p: float in [-25,25] 

q: ? 

r: float in [-20,20] 

x: float in [0,5] 

y: float in [-5,0] 

z: float in [-5,5] 

p: float in [-25,25] 

q: float in [-20,20] 

r: float in [-20,20] 

Table 2: Propagation of types and bounds through the same diagram, this time with manual injection of type and 
bounds into the feedback loop. 

 
Appendix 4: Session 
 
A recording of a short command-line session with the requirement analyser. Seven commands are issued (bold 
lines numbered in square brackets). Commands [1] and [2] display two files containing the requirement to be 
verified; in the second case, the requirement has an empty ―while‖ clause, which makes it nonsensical. The third 
command displays the basic property--variable condition association table.  Command [4] invokes the analyser on 
the correct requirement, and the result is a logical breakdown of the sentence, together with the HySAT target 
formula. Commands [5] and [6] produce CTL and LTL target formulae, respectively. Finally, an attempt to analyse 
a grammatically incorrect requirement is made, and results in an appropriate error message [7]. 
 

[1] marek@belafonte:~$ cat req 

it shall always be true that the autobrake is disarmed after the aircraft takes off 

[2] marek@belafonte:~$ cat malformed_req 

it shall always be true that the autobrake is disarmed after the aircraft takes off while 

[3] marek@belafonte:~$ cat leaves 

the autobrake is disarmed = y27x136 <= 0 

the aircraft takes off = (1 - y27x9) * y27x9' >= 1 

[4] marek@belafonte:~$ ./analyser.exe -R req -L leaves 

This is the Requirement Analyser. 

 

Results: 
 

it shall always be true that the autobrake is disarmed after the aircraft takes off: 

 

it shall always be true that 

  the autobrake is disarmed 

 after 

  the aircraft takes off 

 

Refute (BMC mode): (!(y27x136 <= 0)) and (((1 - prev_y27x9) * y27x9) >= 1); 

================================================================================ 

[5] marek@belafonte:~$ ./analyser.exe -R req -L leaves -T ctl 

This is the Requirement Analyser. 

 

Results: 
 

it shall always be true that the autobrake is disarmed after the aircraft takes off: 

 

it shall always be true that 

  the autobrake is disarmed 

 after 

  the aircraft takes off 

 

AG (((1 - y27x9) * y27x9' >= 1) -> (AX ((1 - y27x9) * y27x9' >= 1))) 

================================================================================ 
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[6] marek@belafonte:~$ ./analyser.exe -R req -L leaves -T ltl 

This is the Requirement Analyser. 

 

Results: 
 

it shall always be true that the autobrake is disarmed after the aircraft takes off: 

 

it shall always be true that 

  the autobrake is disarmed 

 after 

  the aircraft takes off 

 

G (((1 - y27x9) * y27x9' >= 1) -> (X (y27x136 <= 0))) 

================================================================================ 

[7] marek@belafonte:~$ ./analyser.exe -R malformed_req -L leaves 

This is the Requirement Analyser. 

 

================================================================================ 

it shall always be true that the autobrake is disarmed after the aircraft takes off while: 

 

it shall always be true that 

   the autobrake is disarmed 

  after 

   the aircraft takes off 

 while 

  ??? 

 

This requirement is structurally malformed. 

================================================================================ 

 
 

8. Glossary 

DPLL Davis-Putnam-Logemann-Loveland 
backtracking algorithmic procedure 

HySAT An implementation of an SMT 
technique focusing on hybrid and non-
linear aspects of the analysed 
problems. 

ICD Interface Control Document. 

LTL Linear Temporal Logic. A formal 
mathematical language for expressing 
properties of deterministic systems. 

SAT Satisfiability 

SLDV Simulink Design Verifier. An add-on to 
Simulink and Stateflow providing basic 
model verification capabilities. 

SMT Satisfiability Modulo Theories. A field of 
theoretical computer science 
concerned with algorithms for solving 
complex arithmetical decision problems 
using background knowledge of 
structures involved (e.g. associativity of 
addition). 

SMV Symbolic Model Verifier 

TLC Target Language Compiler. An internal 
Simulink code generation language. 

 


